Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.

نویسندگان

  • Pengfei Zhan
  • Palash K Dutta
  • Pengfei Wang
  • Gang Song
  • Mingjie Dai
  • Shu-Xia Zhao
  • Zhen-Gang Wang
  • Peng Yin
  • Wei Zhang
  • Baoquan Ding
  • Yonggang Ke
چکیده

Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A plasmonic nanorod that walks on DNA origami

In nano-optics, a formidable challenge remains in precise transport of a single optical nano-object along a programmed and routed path toward a predefined destination. Molecular motors in living cells that can walk directionally along microtubules have been the inspiration for realizing artificial molecular walkers. Here we demonstrate an active plasmonic system, in which a plasmonic nanorod ca...

متن کامل

3D plasmonic chiral colloids.

3D plasmonic chiral colloids are synthesized through deterministically grouping of two gold nanorod AuNRs on DNA origami. These nanorod crosses exhibit strong circular dichroism (CD) at optical frequencies which can be engineered through position tuning of the rods on the origami. Our experimental results agree qualitatively well with theoretical predictions.

متن کامل

Tunable optical activity of plasmonic dimers assembled by DNA origami.

We investigate the optical response of gold nanorod (AuNR) dimers assembled in parallel on a DNA origami template. Plasmonic circular dichroism (CD) was found to be highly dependent on the orientation of the dimers relative to the DNA axis and the inter-rod distances. Dipole-dipole distances play a critical role in the induced plasmonic chirality. The orientation dependence of induced CD was fu...

متن کامل

Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.

DNA origami is a novel self-assembly technique allowing one to form various two-dimensional shapes and position matter with nanometer accuracy. We use DNA origami templates to engineer surface-enhanced Raman scattering substrates. Specifically, gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resu...

متن کامل

DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.

Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2017